
formed on the lateral part of the body can shield the surface not only partially but complete- 
ly from the action of high-velocity particles. The resulting amount of erosion damage of the 
surface is determined by the initial period of formation of the dust layer with a characteris- 
tic time for the process of Ater ~ i/2pk c. 
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CALCULATION OF THE VIRTUAL MASS OF SPHERICAL 

PARTICLES IN A DISPERSED MEDIUM 

A. E. Kroshilin and V. E. Kroshilin UDC 532.529 

One of the central problems in the mechanics of multiphase dispersed media is the problem 
of determining the interphase interaction. This problem is most simply solved by using 
relations which are valid for a single inclusion, moving in an unbounded carrying medium. 
This approach, however, does not take into account the effect of the inclusions on one an- 
other through the carrying medium, which can lead to considerable errors in the determination 
of the interphase interaction [1, 2]. 

The effect of inclusions on one another is easy to take into account within the framework 
of the cellular approach, which is analyzed in [i]. The method of cells is applicable to the 
study of media with a regular structure. Dispersed media, as shown in [1], have different 
microstructures under different conditions: a regular structure, when the distance between 
neighboring inclusions is the same; a chaotic structure, when the inclusions are distributed 
randomly, and others. 

In the general case, the average interphase interaction force is found by averaging the 
interphase interaction force over all positions of the inclusions. However, the distribution 
function of the positions of the inclusions depends on the interphase interaction force. 
Thus, to determine the average interphase interaction, it is necessary to solve a very 
complicated problem. 

Except for the rare exception [3], in solving this problem it is assumed that a dispersed 
medium has either a regular or chaotic structure. However, even after this assumption is 
made, it is difficult to determine the average interphase interaction, since it is difficult 
to determine the interphase interaction for a specific distribution of inclusions. For this 
reason, many authors use different simplifying assumptions in calculating the average inter- 
phase interaction [4-6]; in addition, within the framework of their approach, it is impossible 
to estimate the error introduced by these assumptions. The results obtained using the exact 
solution of the problem of interaction of several inclusions in the carrier medium are more 
reliable [7, 8]. 

In this paper, we examine the problem of the motion of spherical inclusions in an ideal 
carrier medium. We describe the technique for calculating the average characteristics of 
the interaction of inclusions with the carrier medium. This technique is used to calculate 
the virtual mass of spherical inclusions in the dispersed medium. 
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The virtual mass of inclusions in dispersed media m was previously studied in several 
papers. In [i], a formula is obtained, using the classical method of cells, for the virtual 
mass of inclusions in a medium with a regular structure: m = (2/3)~R~p, where R is the 
radius of the inclusion and p is the density of the fluid. It follows from this formula 
that the virtual mass does not depend on the volume concentration. 

A somewhat different method of cells was used in [9], where it was found that m = 
(2/3)~Rap~I + 3~2) (~= is the volume concentration of inclusions). 

This formula gives an increase in the virtual mass with an increase in the volume con- 
centration of inclusions, which appears, at first glance, to be incorrect. However, the 
exact solution of the problem of the motion of two bubbles in an ideal fluid gives both a 
decrease and an increase in the virtual mass of bubbles depending on their relative position. 
These guiding considerations show that the average virtual mass can, in principle, increase 
with an increase in the volume concentration. 

In [i0], the following formula is obtained for media with a chaotic structure: 

The method used in [i0] is close to the method used in this work, but Prosperetti and 
Van Wijngaarden [i0] were able to finish the calculations and to obtain a result only in the 
dipole approximation for the interaction force. It is evident that the virtual mass also 

increases with ~2. 

The dispersed media with a chaotic structure were also studied in [ii], where the 
following formula was obtained for the virtual mass: 

L 

Buyevich [Ii] used an approximate self-consistent interaction method. It follows from 
the formula obtained that the virtual mass of a particle in a dispersed medium is less than 
the virtual mass of a single particle with 0 < m2 < 0.0025; in addition, the virtual mass is 
minimum for ~2 = 0.00092 and is equal to 99.97% of the virtual mass of a single particle. 
For ~2 > 0.0025, the virtual mass of the inclusion in a dispersed medium is greater than the 

virtual mass of a single inclusion. 

i. Basic Equations and Assumptions. The interphase interaction forces for a specific 
distribution of inclusions depend on the velocities of the inclusions, which in their turn 
depend on the interaction forces. It is very difficult to calculate the forces in the general 
case. For thisreason, it is of interest to calculate the forces using different simplifying 
hypotheses. In so doing, it is natural to expect that the use of physically well-founded 
hypotheses will make it possible to describe qualitatively correctly the basic characteristics 
of the exact solution. The problem is greatly simplified if it is assumed that the velocity 
of the bubbles is given. For example, we can study the case of a constant velocity of bubbles, 
which does not depend on their distribution. However, the following scheme is probably more 
systematic. We shall assume that the force of interaction of inclusions with one another is 
small compared to the forces acting on a single bubble. In this case, the velocity of the 
bubbles is determined by the buoyancy force, which is the same for all bubbles, and the force 
of friction of the inclusion against the carrier medium. The friction force is determined by 
the velocity of the bubbles relative to the fluid. From here follows the fact that the veloc- 
ities of the bubbles relative to the liquid for any arrangement of the bubbles are constant. 

The arguments presented above are not rigorous. They should be viewed more as motivating 
considerations, showing the reasonableness of the hypothesis of constant relative velocity 
used below. We note that this hypothesis describes qualitatively correctly the basic charac- 
teristics of the motion of inclusions in the carrier medium. For example, when bubbles rise 
in a fluid, the hypothesis of constant relative velocity permits describing the effect of a 
more rapid motion of two bubbles, moving one after the other compared to the movement of a 
single bubble. An analogous hypothesis was successfully used in [12~. 

Fixing the relative velocity of inclusions permits determining the velocity field of the 
carrier medium with a specific distribution of inclusions. After this, the average force can 
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be found. In performing the average, it was assumed that the inclusions are distributed 
"randomly," as understood in [8]. 

To define the concept of the velocity of inclusions relative to the carrier medium, we 
shall examine potential flows of the carrier medium past the inclusions. Then, the potential 
of the flow can be expanded in spherical harmonics in a neighborhood of any inclusion with 
the other inclusions distributed arbitrarily: 

P'/ (cosO)(aj'mcosm(~ + ~jmsinrmT) A;m, "j + r-771] , (i.i) 
~=0 m ~ o  

where pm are the associated Legendre functions of the first kind of order j ; 0 and r are the 
J 

angle of the radius vector r (from the origin of coordinates to the point at which the poten- 
tial is being determined) with the z axis and its modulus, respectively; and ~jm, 8jm, Ajm, 
Bjm are constants. 

In the case of a single spherical particle of radius R moving with velocity Av = (Avx, 
AVy, Avz) in a stationary unbounded carrying medium, the following relations hold: 

al0B10 = --R3AvJ2, o~11Bl l  = - -  RaAvJ2,  (1.2))  

~iiB1i = --RaAuv/2. 

The remaining coefficients for the motion of a single inclusion are equal to zero. In 
analogy to the case of a single inclusion, we shall use Eq. (1.2) as the definition of 
the velocity of relative motion of a spherical inclusion in a dispersed medium with respect 
to the known coefficients of the expansion (i.i). 

We shall study the flow of a dispersed medium in a region G with boundary ~o. The 
potential of the flow of an ideal fluid ~ past spherical inclusions satisfies the equations 

A q 0 = O  for r ~ G  
and the boundary conditions 

091an Ir ~ = n . v 0  (F0) ,  0910n Ir i = n . v ~ ,  

where  n , , i s  t h e  n o r m a l  t o  t h e  b o u n d a r y ;  vo i s  t h e  v e l o c i t y  a t  t h e  b o u n d a r y  o f  t h e  r e g i o n ;  r i .  
is the boundary of the i-th bubble; and v i is the velocity of the i-th inclusion. The 
vectors v i are chosen so that the velocity of the inclusions relative to the fluid would 
equal Av(r) (Av(r) is a given smooth function of the coordinates). 

We shall construct the potential of the flow of the fluid @ by means of successive 
approximations, reflecting perturbations from some inclusions relative to others [13]. 

The first approximation ~i is sought in the form 

N 

i = 1  

where  ~ i s  t h e  p o t e n t i a l  o f  t h e  f l o w  w i t h  t h e  m o t i o n  o f  o n l y  t h e  i - t h  b u b b l e  i n  an  unbounded 
L 

l i q u i d ;  ~ i s  found  a s  t h e  s o l u t i o n  o f  t h e  e q u a t i o n  

0911 = - - ~  - -  : v i . n ,  

where r i is the radius vector of the center of the i-th inclusion; r is the radius vector of 
the point at which the potential is being determined. The value of vi is selected from the 
condition that the velocity of the inclusion relative to the fluid constructed from the 
potential ~1 coincide with the given velocity (Eqs. (i.i) and (1.2)). 

The second approximation ~2 is sought so that the sum ~I + ~ satisfies the condi- 
tions on the boundary Fo of the region G occupied by the mixture: 

A~ ~=0,  O~2/Onlr o=n.vo-O~UOn]r o. 

The t h i r d  a p p r o x i m a t i o n  i s  r e p r e s e n t e d  i n  t h e  fo rm 
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N 

i = l  

where ~ is sought so that the sum (pl i ~2 ~_ ~ would satisfy the equation and the boundary 
condition on the surface of the i-th inclusion: 

0 ~  I 0 (,1 + ~ )  
A ~ = O ,  q~-~O as I r - - r t [ - + o o ,  ~ r i = v i . n  0,~ r f  

In  t h i s  c a s e ,  t he  v e l o c i t y  o f  the  i n c l u s i o n  v i i s  found f rom th e  c o n d i t i o n  t h a t  t he  
velocity of the inclusion relative to the fluid, constructed from the potential ~i~_~2 + ~3, 
would coincide with the given velocity (Eqs. (i.i) and (1.2)). The next approximations are 
found analogously. 

We note that the potential of the fluid flow ~ around two moving inclusions, constructed 
in this manner, as shown in [13], converges very rapidly to the exact potential for any 
(including the case of touching) distances between the inclusions. 

It follows from the construction of ~ that ~ is represented in the form of a series 
whose terms either do not depend on the position of any one of the inclusions (such a term 
is present in ~) or it depends only on the position of one inclusion only (~)or two in- 
clusions only, etc. We single out a fixed test inclusion centered at the point ro, around 
which the external inclusions are distributed. It is convenient to sum, in analogy to [8], 
the terms in ~ which depend on the position of precisely ~ external inclusions (l = O, i, ..., 
N). Then 

N 

,~ (r [r~ r~ . . . . .  rN) ----- ~ X? (r), ~o" = ~o (r, ro}, 
l--0 

7.? = ~ '  Xl (r I ro, r~ . . . . .  ri~), 
N 

W r i D . . . r i l  

(1.3) 

where X~ depends on the position of only I external inclusions; Wr~1,..N ,r~l is a combination of 

out of N inclusfons (the inclusions ii, ..., i I are selected); x~(r[r0, ril ..... riz ) depends 

only on the position of the inclusions iI, ..., iZ and of the test inclusion. We shall call 
the quantity X~ the l-particl e interaction. 

The force F acting on a bubble can be easily calculated, in the case of a nonviscous 
fluid under study, using the equation 

F = - -  .f pds ,  (1. 4) 
S 

where S is the surface of the test bubble and p is the pressure in the fluid. We determine 
the pressure p from the Cauchy-Lagrange integral for a fluid near the test inclusion: 

p = p/(t) + pU --  pO~/Ot - -  p(grad V)~/2, ( 1 . 5 )  

where ~ is the potential of the fluid flow; p is the density of the fluid; t is the time; 
f(t) is a function of time; and U is the potential of the body force. 

For simplicity, we shall restrict ourselves below to the one-dimensional formulation of 
the problem and we shall assume that there are no gradients of the average parameters of the 
medium, i.e., the velocity of the inclusions relative to the fluid is oriented along the z 
axis and all average characteristics of the flow do not depend on the coordinates. 

We substitute (1.5) into (1.4). The first term in (1.5) gives a zero contribution to 
the force F and the second term gives the buoyancy (Archimedes) force F A. We average the 
equation obtained over the position of all bubbles, except that of the test bubble, i.e., we 
multiply by the distribution function and integrate over the space of states. The final 
expression for the force averaged over the position of the centers of other inclusions <F>, 
acting on the trial inclusion in a one-dimensional flow (along the z axis), has the form 
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7~ <f> = FA + p cos Ods + -:y 

//: 1 I*, t~ 
F a = - -  - - ~  a i r ~  

(grad r  
(1.6) 

where g is the acceleration of gravity. It can be shown that the third term in (1.6), in the 
case that there are no gradients of the average characteristics of the flow, vanishes. For 
this reason, we shall examine below only'the second term, which, substituting (1.3), can be 
represented in the form 

N 

7i -  Xz (r ] ro, r,  . . . .  
l=o - - ,  .... n s ( l .  7)  

�9 . . ,  r l ) / l+ ,  fro, r ,  . . . . .  rl) cos O d s d r , . . .  dn ,  

w h e r e  f l + l  i s  t h e  ( l  + 1 ) - p a r t i c l e  d i s t r i b u t i o n  f u n c t i o n  o f  t h e  c e n t e r s  o f  t h e  b u b b l e s ;  Vo i s  
t h e  v o l u m e  o f  t h e  m i x t u r e .  

The sum ( 1 . 7 )  i s  t h e  c o r r e c t  e x p a n s i o n  o f  t h e  s t a r t i n g  i n t e g r a l  i n  p o w e r s  o f  a= i n  t h e  
c a s e  when t h e  i n t e g r a l s  on t h e  r i g h t  s i d e  o f  ( 1 . 7 )  h a v e  f i n i t e  l i m i t s  a s  Vo § ~ and  aa  + O. 
It is shown in [8] that for media with a regular structure, this is not the case. 

2. Proof of the Correctness of the Expansion (1.7) for l~ 2. The quantity Xl can be 
represented in the form of a sum of two terms: The first term X~ is boundary-independent 

F 
and the second term X l appears as a result of the boundary'xz = %~ + X~- 

t 

We shall study the structure of X~- To assess the convergence of the integrals in (1.7), 

is important to know the behavior of X~ far from the centers of the inclusions ro, rl, ..., it 

r I. For this, it is convenient to use the expansion of X~ in spherical harmonics. In the 

analysis of the convergence, only the leading order spherical harmonics, which drop off most 
slowly, need be retained. Every odd approximation after the first one (third, fifth, etc.) 
changes the coefficients of all spherical harmonics in the expansion except the zeroth one 
(the coefficient in front of which is equal to zero) and, as shown above, the first harmonic 
(the coefficient in front of which is determined by the velocity of relative motion and re- 
mains constant (i.i) and (1.2)). For this reason, the leading order spherical harmonics X~ 

(for l~ 2) will be quadrupoles. Quadrupoles for r § ~ drop off as i/r 3. It can be shown that 
with the reflection of a dipole or quadrupole of intensity q in the i-th inclusion, a quadru- 

( R )4 [ R ~5 respectively, appears. Then, the following pole of intensity q ] r i _ r j l -  or q~ ] r i - - r J ]  ] , 

b 
estimate holds for the quantity Xl: 

zg=k i , . , _ , =  I I'= ' ~ 1  l ' = - - r ~ l  "'" I h - l - ' Z l  I r z - r l  a' 

where the first factor describes the intensity of the quadrupole in the second inclusion, 
induced by the dipole in the first one; the last factor describes the magnitude of the poten- 
tial induced at the point r by the quadrupole in the l-th inclusion; and the remaining fac- 
tors describe the intensity of the quadrupoles in the i-th inclusion, induced by the quadru- 
pole in the (i -- l)-th inclusion. The quantity k depends on the velocities of the bubbles 
and the cosines of the angles between the vectors r i -- r j, r I -- r and the coordinate axes. 

Then, taking into account the fact that in the calculation the term Van~at is important, it 
can be shown that if finite accelerations (of the fluid and of the bubbles) are realized, 
then the following estimate is valid: 

~~162 R k R )4 tl )5 R .)r, t 
. . .  i t , _ . _ _ , .  ] Ir, I 4'  ( 2 . 1 )  
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where kl is a constant for the entire volume Vo. 

The integrals in the expansion (1.7) depend on the behavior of (l + l)-particle distri- 

bution function ]l+a(ro, rl,...,rl) . The obvious properties of the function ]t+l(r0, r I .... , rl ) 

for a chaotic distribution of the inclusions (]l+1(r0, rl ..... rt)<C, fz+1(r0, rl ..... rz) = 0 for 

Iri -- rjl < 2R), taking into account (2.1), finally yield 

-87- cos Ods]~+l (r,, r 1 . . . .  , rz ) d3rl . . .  d3rz < eD ( 2 . 2 )  

r i , . . . , u  l S 

w h e r e  c~ i s  a c o n s t a n t  w h i c h  d o e s  n o t  d e p e n d  on  a a  and  Vo, w h i c h  p r o v e s  t h e  v a l i d i t y  o f  t h e  
e x p a n s i o n  ( 1 . 7 ) .  

The e f f e c t  o f  t h e  b o u n d a r y  o f  t h e  r e g i o n  i s  s t u d i e d  a n a l o g o u s l y .  F o r  a f l a t  b o u n d a r y ,  
t h e  f u n c t i o n  X~ i s  c o n s t r u c t e d  e x p l i c i t l y  b y  t h e  m e t h o d  o f  i m a g e s  r e l a t i v e  t o  t h e  s u r f a c e  o f  

t h e  b o u n d a r y .  The c o r r e s p o n d i n g  e s t i m a t e s  a r e  e a s i l y  made a n a l o g o u s l y  t o  t h e  c a s e  o f  t h e  
a b s e n c e  o f  b o u n d a r i e s .  F o r  an  a r b i t r a r y  r e g i o n ,  i t  i s  m o r e  d i f f i c u l t  t o  t a k e  t h e  b o u n d a r y  
into account, but it can be shown that, for example, estimates of the type (2.2) are also 
valid for convex regions Vo. 

The calculations and arguments presented above prove that the sum (1.7) is the correct 

(~coseds~ in powers of (~2) l for I~2. This means that in order to expansion of 

determine the average of the force with accuracy up to ~= it is sufficient to study the first 

two terms in (1.7). 

3. Calculation of the Contribution of the First Two Approximations of ~ to the Inter- 
phase Interaction Force. To calculate the first two terms on the right side of (1.7), it is 
necessary to use all of the approximations of the iteration method in constructing the 
potential ~. It is shown below that it is very difficult to calculate the contribution from 
the first two approximations ~1 and ~2 directly from Eq. (1.7). For this reason, the contri- 
bution from ~i and ~2 is calculated using a special device. Successive approximations of 

are taken into account directly according to Eq. (1.7). 

The following equation is obtained from the construction of ~i and ~: 

0t  ' = I r~ - -  ~ I~ + - -  ( v  Cry) + 
| = l  

w h e r e  0 i s  t h e  a n g l e  b e t w e e n  t h e  v e c t o r  r - -  r i  a n d  t h e  z a x i s  and  v ( r  i )  i s  t h e  v e l o c i t y  o f  t h e  

i - t h  i n c l u s i o n .  

Substitution of the separate terms on the right side of (3.1) into (1.7) leads to inte- 
grals which diverge in the limit Vo + ~. This is associated with the fact that dipoles dis- 
tributed uniformly in the entire infinite volume will give rise to infinite velocities of the 

liquid. 

Infinite velocities will not arise in real problems due to the boundary conditions, i.e., 
due to a~/0t. This means that the integral in (1.7) in front of (a2) ~ over the entire ex- 
pression (3.1) will be finite, though the integrals of each of the terms in (3.1) will be 
infinite. It is difficult to determine ~2 with arbitrary geometry of Vo and arbitrary bound- 
ary conditions. To circumvent this difficulty we shall relate 

< f  ' ~ + ~) 
t o  t h e  a v e r a g e  p a r a m e t e r s  o f  t h e  f l u i d  i n  t h e  c o r r e s p o n d i n g  e l e m e n t a r y  v o l u m e .  F o r  t h i s ,  we 
s h a l l  u s e  G r e e n ' s  t h e o r e m  [ 1 4 ] ,  w h i c h  i s  w r i t t e n  i n  t h e  f o r m  

V S 
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For the region V, we shall use the volume occupied by the mixture excluding the 
volume ocaupied by the trial inclusion. We note that V includes the volumes of the external 
inclusions. For ~ and ~ we shall use the functions 8(~t + ~)/~t and cos ~/r 2, respectively. 
It follows from (3.1) that V~ is represented in the form of a sum of delta functions and 
their derivatives. This permits calculating the left side of (3.2) and averaging (3.2) over 
the position of the external inclusions. The final formula has the form 

! [  I O(q)l+q~ 2 cosOds/N+l(O, rl, rN)dar I d3r~= 
, , . O t  R 3 �9 �9 �9 t �9 �9 . 

r I . . . . .  r N 81 

YS I C~ 0 [tO (q}-~-r (0, r l , . .  rn) darl . d3rN--  
- -  , R 2  i ) r  Ot " ' " " 

rl,...,rN S/ 

;S f[ ooo+o +1 -- , ~P an r'Z r ~ a n  d s / n + l  (0, r t  . . . .  , rN) d'~rl . . .  d~r~  + 
rl,...,rN F o 

r I r 1 
X Av (r~) [v (r~) - -  v (0)1 n g  ( 0 ~  r ~ )  d ' ~ r x ,  

X 

(3.3) 

where g is the binary correlation function for a chaotic distribution of inclusions [15]; 
01, rz are the coordinates of the vector r~; and Sf is the surface of the trial bubble. 
Equation (3.3) permits calculating the contribution of ~t and ~2 to the average interphase 
interaction force. 

The first term on the right side of (3.3) can be determined by applying Green's formula 
(3.2), in which the volume of the trial inclusion, 0(~t~ ~z)/at, and r cos 0 are used for the 
volume V and the functions ~ and ~, respectively. The remaining terms on the right side of 
(3.3) can be greatly simplifiedby applying once again Green's formula, in which the volume 
occupied by the mixture Vo, 0(~ I + ~)/Ot , and cos 0/r2 are used for the volume V and the func- 
tions ~ and ~, respectively. In addition, in this case, distributions of the centers of the 
inclusions such that the origin of coordinates is located in the carrier medium are examined. 
Equation (3.3) finally assumes the form 

Y Y f a(~t 4- q~') 3 cosO)Cn+ ' (0, rN)dsdar, d'~rN 
�9 O t  R .~ . r l ' ' ' "  " ' "  = 

rl,... ,r N Sf 

- -  , [~b/N+, (0, r~ . . . . .  rN) - -  ~ l f N  (0]  r l ,  . . . ,  r~-)] -~a ~ r ~ ] 
rl,... ,FN 1~ 0 

, rN)] COS 0 
- - 7 ~  j dsd'~rl . . .  dSr n + - -  [ ~---~-~/N+I (0, r I . . . . .  rN)----~/I~(0[ r, . . . .  

-}- ~ f 3cOS201-t  aAv('l) 1 , g ( g _ _ g l )  d 3 r , _ _ _ _  

j ~ at 
r 1 

• &v ( r l )  (v (rO - v (0)) n (g - -  g~) #3r 1 + 4= 

4nR a ~ 9 c o s 0 1 - t 5 c o s  a01 

r 1 

~ / N  (0 [ rl, . . .  
rl,...,r N 

OAr 
. . . ,  r x )  dar l  . . .  d3r N - -  4 n  ~ - - ~ - - ,  

X 

(3.4) 

where ~ and @i are equal to 3(~I + ~)/~t, when an inclusion is and is not present at the 
origin of coordinates, respectively; fN+~(0, rz, ..., rN) and fN(01rl, .... rN) are the 
distribution functions of inclusions when an inclusion is and is not presentat the origin 
of coordinates, respectively; gl is a single-particle distribution function of inclusions 
under the condition that the carrier medium is located at the origin of coordinates. 

By performing the quite cumbersome calculations, it can be shown that the first term on 
the right side of (3.4) approaches zero in the limit Vo + ~. 

In it shown in [16] that for a chaotic distribution of inclusions, with accuracy up to 
a2 the functions g and gl can be approximated by step functions: 
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[0 for r < 2 R ,  {0t for r < R ,  
g = / t for r > 2R, gr = for r > R. 

Then, retaining the first derivative in the expansion of the integrands in the second and 
third terms on the right side of (3.4), it can be shown that the second and third terms in 
(3.4) also vanish. 

We relate the fourth term on the right side of (3.4) to the average acceleration of 
the fluid <dvJdt>: 

S I 0~I [N (OI rl, rN) d3rl d3rN = / dr: \ . . . . . . .  \ - - ~ - / .  
rl~...,r~ 

Finally, the contribution of the first two approximations to the interphase interaction 
force is equal to 

F1 = < S  a ( ~ - t - ~ ) c o s 0 d s >  4 i oar. 4 a / d v l "  ~ (3.5) at . . . . .  " 3 - $ $ R 3 ~  at e q- "-~- nM , ~ - - ~  / .  

/ 
The calculations show that in the formulation under study the equality ~ <vt> = 

\ 

holds. \--~-/ 

4. Inclusion of Single-Particle Interaction, Arising in Higher-Order Approximations. 
It can be shown that the boundary must be taken into account only in the second approximation, 
which was done in Sec. 3. The single-particle interaction coincides with the exact solution 
of the problem of the motion of two inclusions in an unbounded fluid. It was shown above that 
the higher-order approximations do not change the decreasing dipole harmonics around the 
inclusions. This ensures that the corrections to the potential arising in higher-order 
approximations with increasing distance between inclusions decrease rapidly enough for the 
integrals in (1.7) to converge. We construct the potential of the fluid flow in the presence 
of two inclusions moving in it by the method of successive approximations. The solution of 
the problem of the motion of a sphere in the velocity field of the source is constructed in 
[13]. This solution permits regarding the flow as the motion of a sphere in the field of a 
dipole. 

Let a dipole with intensity Q, oriented along the Oz axis, be situated in the field of a 
dipole positioned at the origin of a spherical coordinate system. A sphere of radius R, 
whose center 0x has the coordinates (St, f), is located in the field of the dipole. It can 
then be shown that the fluid flow is a flow created by the dipole and the following singulari- 
ties inside the sphere. A point dipole, with the projections --cos 0x(R/f)Q and sin 81(R/f)~Q 
on the OOx axisand on the axis perpendicular to OOx, respectively, is located at the point 02 
on the 001 axis (see Fig. i). The point 02 is determined from the condition (0201) = R2/f. 
Distributed dipoles, oriented perpendicular to the 001 axis with an intensity of Q sin 0t(R/f) s. 
(x/Rf), where x is the distance from the point 01, lie along the segment 0102. 

The solution presented permits constructing by means of successive approximations [13] 
the exact solution of the problem of the motion of two inclusions. 

In calculating the integrals in (1.7), the contribution from the solution constructed 
must be averaged over all positions of the two inclusions. After performing the averaging 
over the angular variables, we represent the contribution F= of the higher-order approximations 
to the interphase interaction force in the form 

/~ = ~ c (/) a/. 
2H 

For the case of large distances between the inclusions (R/f << i), we can restrict our- 
selves to the first terms of the expansion of c(f) in powers of R/f, which can be calculated 

analytically 

C = - -  W ~ 2  ~ R,~ dAVdt " (4 .1)  
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Fig. i 

For the case of small distances f, the value of c was calculated numerically. 
calculations showed that for R/f > 3 the exact value of c coincides with (4.1). 

Finally, 

The 

F2 = --O.t93cr (4.2) 

We note that the use of the analytical result (4.1) only, without performing numerical 
calculations, merely replaces the constant 0.193 by 0.13, which indicates the good accuracy 
of the approximation (4.1). 

Equations (3.5) and (4.2) permit obtaining a final expression for the interphase inter- 
action force, which in an inertial coordinate system has the form 

4 3( / d v l ~  4 n 3 t day (t+0.092~o). (4.3) F = f , + f ~ = p - - ~ - n R  g - - \ - a F / j - - ~ a p - ~ - ~  

The first term corresponds to the buoyancy force and thesecond term corresponds to the 
force due to the virtual mass. It is evident from Eq. (4.3) that the virtual mass of 
spherical inclusions in a dispersed medium is somewhat higher than the virtual mass of a 
single inclusion. Equation (4.3) was obtained for the case when the parameters of the mix- 
ture are uniform. The proposed method permits obtaining an expression for the force acting 
on an inclusion in a mixture with nonuniform parameters. 

In conclusion, the authors thank R. I. Nigmatulin for useful discussions. 
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STRUCTURE OF A LAMINAR BOUNDARY LAYER WITH 

DISTRIBUTED SUCTION 

S. K. Betyaev UDC 533.06 

Suctioning of the boundary layer for purposes of increasing the aerodynamic quality of a 
wing has two purposes: to make the flow laminar and to eliminate or delay its detachment. 
Both the study of the stability of the flow and the formulation of the variational problem of 
determining the energetically optimum rate of suctioning must be based on an analysis of the 
flow in the region near the wall, where pressure losses exist and a transition occurs from 
sharp changes in the velocity of a continuous (averaged) distribution. This analysis is 
performed within the framework of the Navier-Stokes equations with the help of the combined 
method of different scales and joining of asymptotic expansions for the simplest possible 
formulation of the problem and layout of the suction system. The conditions required for 
suctioning off a distributed flow of liquid, which is assumed to be given, are determined. 

i. We choose as the basic unit parameters the chord of the profile, the velocity of the 
unperturbed flow, and the density of the fluid. In a locally Cartesian coordinate system 
xl, yl with the xl axis oriented along the contour of the profile, the equation of transport 
of vorticity A~ (~ is the stream function, ~ = ~2/~x~ + ~=/~y~) in a two-dimensional flow has 
the form L(A~) = 0, where 6 -2 = i/~ is the Reynolds number, ~ is the coefficient of kinematic 
viscosity, and the quasilinear differential operator 

L= a__~ a a~ a 8~A. (i.i) 
Oy 1 0 ~  ax 1 ay 1 

The rate of suctioning of the boundary layer vol is equal, in order of magnitude, to the 
thickness of the boundary layer 

Vol = 8vo(xO.  ( l .  2) 

If Vol is less than this quantity, then suctioning has an insignificant effect on the 
boundary layer. Conversely, if vol is greater than 0(6), then a nonviscous flow is realized 
[ 6 ] .  

We s h a l l  a s s u m e  t h a t  t h e  s u c t i o n i n g  i s  r e a l i z e d  t h r o u g h  a r e g u l a r  a r r a y  o f  t r a n s v e r s e  
s l i t s  w i t h  h a l f - s p a c i n g  T = B ( x : ) 6  n ,  w h e r e  0 < n ~ 2 .  F o r  n > 2,  t h e  s c a l e s  o f  t h e  p e r t u r b a -  
t i o n s  a r e  s o  s m a l l  t h a t  due  t o  t h e  m a n i f e s t a t i o n  o f  m o l e c u l a r  e f f e c t s ,  t h e  N a v i e r - - S t o k e s  e q u a -  
t i o n  b e c o m e s  i n a p p l i c a b l e .  The c a s e  n § 0 c o r r e s p o n d s  t o  d i s c r e t e  s u c t i o n i n g .  We s h a l l  
a s s u m e  t h a t  t h e  p e r m e a b i l i t y  f a c t o r  Xo = X o x / T ,  w h e r e  Xo~ i s  t h e  h a l f - w i d t h  o f  a s l i t ,  i s  
a r b i t r a r y  ( O ~ x o ~ l ) .  

I n  a p p l i c a t i o n  t o  s u c t i o n i n g  o f  l i q u i d  t h r o u g h  p o r o u s  w a l l s ,  t h e  m o d e l  o f  o v e r f l o w  o f  
l i q u i d ,  e x a m i n e d  b e l o w ,  i g n o r e s  t h e  s t o c h a s t i c  d i s t r i b u t i o n  o f  p o r e s  a n d  t h e i r  s h a p e ;  

" Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, 
pp. 97-104, 1984. Original article submitted July 24, 1983. 
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